Министерство общего и профессионального образования icon

Министерство общего и профессионального образования




НазваниеМинистерство общего и профессионального образования
страница1/3
Дата конвертации07.06.2013
Размер372.93 Kb.
ТипРеферат
источник
  1   2   3

Министерство общего и профессионального образования


Свердловской области

Управление образования Верхнесалдинского городского округа


Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа № 2 с углубленным изучением физики, математики, русского языка и литературы»


Пьезоэлектрический эффект: эффектен или эффективен?


Исследовательский проект

(научно – техническое направление)


Исполнитель: Ионкин

Александр

учащийся 11 а класса ОУ №2


Руководитель: Шевчук

Любовь Александровна

Учитель физики, высшая категория


г. Верхняя Салда

2008

Содержание





Министерство общего и профессионального образования 1

Содержание 3

Введение.


«Ощущение тайны – наиболее прекрасное из

доступных нам переживаний. Именно это

чувство стоит у колыбели истинного искусства

и настоящей науки».

Альберт Эйнштейн

Необыкновенная, феноменальная физика? Что может быть в ней такого необыкновенного или удивительного? Конечно, физики считают физику захватывающей наукой, но это потому, что она составляет дело их жизни. Открытие новой субатомной частицы или нахождение нового способа объяснения знакомого явления может привести в сильный трепет. Однако небольшое, но приносящее удовлетворение волнение способно вызвать наблюдение и понимание повседневных явлений природы в окружающем нас мире. Ведь куда занятнее иметь дело с звукозаписью, дистанционными датчиками и зажигалками, если понимать их суть. Поистине удивительны, феноменальны успехи физики в объяснении повседневных явлений.

Мы живем в ХХI веке, веке новых технологий. Жизнь не стоит на месте. Происходит развитие науки, техники, промышленности, технологии и везде используются новейшие подходы к тем или иным процессам. Уже известные, открытые давно и кем-то явления, находят свое новое применение, второе рождение или находят использование в смежных с наукой и техникой областях - архитектуре, строительстве, связи и прочее.

Так и пьезоэлектрический эффект находит широчайшее применение. Мне кажется даже, что есть еще очень много скрытых резервов, ненайденных областей и сфер его применения.

В этом учебном году я начал работать над своим исследовательским проектом по научно-техническому направлению «Пьезоэлектрический эффект: эффектен или эффективен?».

При работе над проектом я ставил перед собой цель: выяснить возможности применения пьезоэлектрического эффекта в различных областях жизнедеятельности человека.

Для себя я выделил следующие задачи:

- познакомиться с историей открытия и изучения явления пьезоэлектрического эффекта;

- рассмотреть теорию пьезоэлектрического эффекта;

-познакомиться со сферами применения пьезоэлектрического эффекта;

- выполнить опыты по демонстрации прямого и обратного пьезоэффектов и предложить способ определения значения напряжения, возникающего при прямом пьезоэффекте.

История открытия и исследования пьезоэлектрического эффекта.

Пьезоэлектрический эффект был открыт в 1880 году братьями Пьером и Жаком Кюри. Они обнаружили, что если кристаллы некоторых диэлектриков (сегнетовой соли, кварца и др.) подвергнуть механическому воздействию, сжатию, то на их поверхности появляются электрические заряды противоположных знаков, или, как теперь принято говорить, в кристалле возникает наведенная поляризация, которая создает внешнее и внутреннее по отношению к кристаллу электрические поля. Это явление - возникновение электрического поля в результате давления - было названо прямым пьезоэффектом.

Было ли это открытие случайным или ему предшествовала научная гипотеза? При исследовании электрических свойств твердых диэлектриков кристаллической структуры Пьер Кюри сформулировал весьма общий принцип, который теперь называется принципом Кюри. Смысл его состоит в следующем: явление обладает всеми признаками симметрии, которыми обладает причина, их породившая; асимметрия явления предопределена асимметрией причины. Поскольку в вершинах кристаллической решетки расположены ионы противоположных знаков, то суммарный заряд кристаллов любой формы равен нулю. Однако если центры положительных и отрицательных зарядов не совпадают, то дипольный момент кристалла отличен от нуля и обладает поляризацией. Поэтому если дипольный момент кристалла в недеформированном состоянии равен нулю, то в результате деформации кристалла под механическим воздействием центры положительных и отрицательных ионов могут сместиться один относительно другого и на поверхностях кристалла появляются заряды противоположных знаков. Возможность такого смещения зависит от симметрии (формы) кристалла.

Сформулированный принцип и теория групп позволили выделить классы кристаллов, которые обладают пьезоэффектом. Обратный пьезоэффект состоит в том, что свободные кристаллы, обладающие прямым пьезоэффектом, под воздействием электрического поля деформируются. Вскоре братья Кюри экспериментально подтвердили обратный пьезоэффект.

Первые количественные измерения, устанавливающие связь величины заряда с давлением на кристаллах сегнетовой соли, были проведены Поккельсом в 1894 году.

В математическую форму эти количественные соотношения были облечены немецким ученым Фойгтом (Voigt) в 1910 году. В 1928 году он привел достаточно полную систему этих соотношений, которая обобщала накопленные знания в области пьезоэлектричества за предшествующий период. Соотношения, полученные Фойгтом, являются

основополагающими для построения математической модели в электроупругости.

Сразу же широкое применение пьезоэффект находит в грамзаписи, а на производстве — в многочисленных пьезодатчиках систем контроля и управления.

С середины 30−х годов XX века пьезоэлементы начинают применять в радиолокационных системах: специальные резонаторы и фильтры, изготовленные из природного кварца, выделяли из широкого спектра радиоволну, отраженную от цели, и усиливали ее. В этих устройствах работал уже принцип обратного пьезоэффекта: при подаче на пьезоэлектрик электрического тока кристалл деформировался и в нем возникали колебания, резонирующие с волной, пропускаемой фильтром частоты. Во время второй мировой войны системы ПВО, разработанные англичанами на основе кварцевой пьезоэлектрики, обнаруживали немецкие самолеты на дальних подступах, лишая противника преимущества внезапности. Во многом именно благодаря этому провалился план Геринга разгромить Великобританию силами Люфтваффе.

Развитие авиа— и ракетостроения в 50−60−е годы потребовало массового производства более точных приборов как для бортовых, так и для наземных систем навигации и радиолокации. Подходящего же (без структурных дефектов) природного кварца добывалось совсем немного. Настоящий пьезотехнический бум начался с середины пятидесятых годов, когда научились выращивать искусственный кристалл кварца — впервые это удалось сотруднику Института кристаллографии имени Шубникова АН СССР (ИКАН) Александру Штенбергу.

В конце 60−х годов появляются новые пьезоматериалы — танталат и ниобат лития. Имея высокий коэффициент линейного расширения, они реагируют даже на самые небольшие изменения инфракрасного излучения, и их используют в первую очередь в приборах ночного видения. Но чувствительность к температурным перепадам приводит к возникновению в них паразитных шумов — беспорядочных колебаний различной частоты, — что ограничивает их применение. Тем не менее фильтры из танталата и ниобата лития используются достаточно широко: они стоят в PAL-декодере каждого современного телевизора, в беспроводных компьютерных модемах и мобильных телефонах стандарта CDMA. А на излете советской эпохи появляется новый пьезоэлектрический материал, лишенный недостатков и кварца, и танталата, и ниобата лития.


Лангасит – перспективный пьезоэлектрический материал.

В 1983 году группа советских ученых физфака МГУ и Института кристаллографии выращивают первый кристалл лангасита (лантан галлиевый силикат — La3Ga5SiO14). Первоначально его планировали использовать в качестве активного элемента твердотельных лазеров с изменяемой частотой излучения, некоторые параметры материала не устроили специалистов по нелинейной оптике. Зато его пьезоэлектрические качества оказались настолько перспективными, что в немыслимые по тем временам сроки, уже через два года после открытия, началось производство кристаллов лангасита на нескольких растовых установках Подольского опытно-химического завода (кураторами выступали специалисты кафедр кристаллографии МИСиСа и ИКАНа). Тогда же «Фонон» — головной институт по разработке пьезотехники, незадолго до того отпочковавшийся от столичного предприятия «Пьезо», получил задание разработать приборы на лангасите для головок наведения ракет.

Интерес к лангаситу был вызван тем, что он имел более широкую полосу пропускания по сравнению с кварцем и в то же время в отличие от танталата и ниобата лития обладал температурной стабильностью. Ширина пропускания характеризуется спектром сопутствующих основной волне частот, и чем шире полоса пропускания полезного сигнала в усилителях промежуточных частот, тем больший объем цифровой информации может обработать приемопередающая радиоаппаратура и, соответственно, выдать более точные координаты быстролетящей цели. Важность миниатюрных широкополосных фильтров трудно переоценить, когда речь заходит, например, о сотовой связи. Так, для работы телефонов распространенного сейчас стандарта GSM (передача речи и стационарных картинок) требуется полоса пропускания всего в 200 кГц, а для W-CDMA, которому прочат роль всемирного стандарта следующего поколения, поскольку он позволяет передавать видеоизображение в режиме реального времени, необходима полоса шириной уже более 5 МГц. То есть при частоте базовой волны в 2 ГГц показатель ширины пропускания фильтра должен быть выше 0,3%. У кварца показатель ширины пропускания в зависимости от частоты основной волны составляет 0,1−0,3%, у лангасита — от 0,3 до 1%.

У пьезоматериалов на основе лития показатель ширины пропускания, правда, доходит иногда до 4%. Но это важное свойство сводится на нет необходимостью подавлять возникающие из-за чрезмерной термочувствительности (кварц и лангасит намного более стабильны в этом) паразитные сигналы, что приводит к усложнению и удорожанию всего устройства. Лангаситные фильтры, изготавливаемые на «Фононе», были в десять раз меньше кварцевых при сопоставимой

ширине пропускания и при этом обладали почти такой же термоустойчивостью.

На сегодняшний день Россия заключила контракт с французской Temex Microsonics. В их совместный проект в рамках европейской инновационной программы Eureka в течение трех лет будет инвестировано около 3 млн евро. Более 2 млн предоставит французская сторона, в первую очередь правительство Франции, более 200 тыс. выделит Фонд Бортника, еще около 700 тыс. собственных средств вложит «Фомос». В результате российская компания выйдет с новым пьезоэлектрическим (от греческого piezo — давлю) материалом лангаситом на европейский рынок, а Temex Microsonics организует из него серийное производство фильтров для получающих все большее распространение мобильных систем нового поколения (стандарт W-CDMA).


Физическая теория пьезоэлектрического эффекта.


Диэлектрики (по греч. dia – через, сквозь, по англ. elec – электрический) – это вещества , которые не проводят электрический ток. Причиной этого является отсутствие у диэлектриков свободных зарядов. Положительные и отрицательные заряды в молекулах и атомов диэлектриков связаны друг с другом кулоновскими силами, значительно превосходящими силы, с которыми внешнее электрическое поле может воздействовать на эти заряды. Оно не может оторвать их друг от друга, а может лишь сместить на расстояние порядка размеров самой молекулы (10-10 м). Поэтому положительные и отрицательные заряды в молекулах диэлектриков являются связанными. Они не могут свободно передвигаться по диэлектрику, внесенному во внешнее электрическое поле.

В молекулах веществ можно указать точку, в которой суммарный заряд электронной оболочки молекулы будет оказывать на ее положительные заряды такое же воздействие, какое оказывали бы все отрицательные заряды этой молекулы, будучи распределены по всему ее объему.

Эта точка называется центром тяжести отрицательных зарядов молекулы. Точно так же можно указать центр тяжести положительных зарядов, т.е. точку, в которой суммарный положительный заряд молекулы будет оказывать на ее отрицательные заряды такое же воздействие, какое на них оказывают все положительные заряды молекулы.

Диэлектрики, в молекулах которых центры тяжести положительных и отрицательных зарядов совмещены в отсутствии внешнего электрического поля называют неполярными диэлектриками. Примером таких диэлектриков могут быть газы: водород, азот, кислород. Диэлектрики, в молекулах которых центры тяжести положительных и отрицательных зарядов пространственно разделены и в отсутствии внешнего электрического поля называются полярными. Примером полярных молекул служат молекул служат молекулы льда.

Смещение зарядов в молекулах и атомах диэлектрика в противоположных направлениях под действием электрического поля, в результате чего на поверхностях диэлектрика возникают нескомпенсированные связанные заряды, называется поляризацией диэлектрика.

У однородных и изотопных твердых аморфных диэлектриков, а также диэлектриков жидких и газообразных, в отсутствие внешнего электрического поля поляризация всегда отсутствует из-за разориентации дипольных моментов отдельных молекул. Если такой поляризованный диэлектрик удалить из внешнего электрического поля, то тепловое хаотическое движение, всегда присущее молекулам, быстро ликвидирует связанные заряды на его поверхностях и при этом суммарный дипольный

момент каждой единицы объема диэлектрика станет равен нулю, то есть поляризация исчезнет.

Однако в природе существуют кристаллические диэлектрики, молекулы которых образуют группы, обладающие самопроизвольной (спонтанной) поляризацией даже в отсутствие внешнего электрического поля. Понятно, что эти группы могут быть образованы только из полярных молекул. Такие группы молекул называются доменами. Поведение молекул, входящих в состав домена, объясняется законами квантовой механики.

Диэлектрики, обладающие доменной структурой, называют сегнетоэлектриками. Название это происходит от слов «сегнетова соль» - наиболее типичного сегнетоэлектрика, который в свою очередь, был назван в честь французского аптекаря Э. Сегнетта, впервые синтезировавшего это вещество.

Все сегнетоэлектрики – кристаллы.

При помещении кристалла неполяризованного сегнетоэлектрика во внешнее электрическое поле и увеличении напряженности этого поля домены начнут все более ориентироваться по полю, чему препятствует тепловое разориентирующее движение молекул.






Рисунок 1. Сегнетоэлектрик во внешнем поле.

При достижении некоторой достаточно большой напряженности все домены кристалла окажутся ориентированы по полю. Такое состояние диэлектрика называется насыщением, а соответствующая напряженность – напряженностью насыщения.

Если удалить диэлектрик из электрического поля, то он сохранит поляризацию.

Способность сохранять поляризацию и в отсутствие внешнего электрического поля является самой главной особенностью, отличающей сегнетоэлектрики от остальных диэлектриков.

Чтобы располяризовать сегнетоэлектрик, надо его поместить в электрическое поле, антинаправленное первоначальному.

В настоящее время известно несколько сотен сегнетоэлектриков. Второй существенной особенностью, отличающей их от остальных диэлектриков, является чрезвычайно высокое значение относительной диэлектрической проницаемости, достигающей у отдельных сегнетоэлектриков нескольких тысяч, тогда как у остальных диэлектриков она колеблется в пределах десяти и только у воды достигает 81. Третьей особенностью сегнетоэлектриков является зависимость относительной

диэлектрической проницаемости от напряженности внешнего электрического поля, тогда как у остальных диэлектриков она постоянна.

Все сегнетоэлектрики обладают такими замечательными свойствами лишь в определенном интервале температур. Например, сегнетова соль имеет доменную структуру лишь в интервале температур между -15 0С и 22,5 0С. При иных температурах она ведет себя как обычный диэлектрик. Например, у кварца до температуры 200 градусов Цельсия пьезоэлектрические свойства изменяются незначительно, а затем до температуры 576 градусов Цельсия начинают медленно ослабевать. При 576 градусах происходит перестройка кристаллической решетки кварца, в результате которой пьезоэлектрические свойства у него исчезают. При понижении температуры изменение свойств кварца происходит в обратном направлении.

Эти переходные температуры, при которых диэлектрик становится сегнетоэлектриком, называются точками Кюри, по имени братьев Пьера и Жолио Кюри, которые обнаружили это явление.

У большинства диэлектриков поляризация возникает под действием внешнего электрического поля, а у пьезоэлектриков в результате механического воздействия, например, при сжатии или растяжении.

Различают продольный и поперечный пьезоэффект.

Возникновение зарядов на гранях, перпендикулярных полярной оси, при однородной деформации кристалла вдоль этой оси называется продольным пьезоэффектом. Однако можно вызвать появление зарядов на тех же гранях, сжимая или растягивая кристалл перпендикулярно полярной оси, если только при этом происходит растяжение или сжатие кристалла вдоль полярной оси. Это явление называется поперечным пьезоэффектом. Его существование обуславливается связью между продольными и поперечными деформациями твердого тела.




Рисунок 2. ^ Продольный (а) и поперечный (б) пьезоэффекты.

Пьезоэлектриками являются все сегнетоэлектрики, а также некоторые другие диэлектрики, например, кварц, некоторые сорта керамики.

Пьезоэлектрическими свойствами могут обладать только ионные кристаллы. Пьезоэлектрический эффект возникает в том случае, когда под действием внешних сил кристаллическая подрешетка из положительных ионов деформируется иначе, чем кристаллическая подрешетка из отрицательных ионов. В результате происходит относительное смещение положительных и отрицательных ионов, приводящее к возникновению поляризации кристалла и поверхностных зарядов. Поляризованность в первом приближении прямо пропорциональна деформации, которая, в свою очередь, прямо пропорциональна силе. Следовательно, поляризованность прямо пропорциональна приложенной силе. Между разноименно заряженными гранями деформированного диэлектрика возникает разность потенциалов, которую можно измерить, а по ее значению сделать заключение о величине деформаций и приложенных силах.

Физическая картина поляризации твердых диэлектриков раскрывается квантовой механикой. Я рассмотрю только формальную теорию поляризации.

Пьезоэлектрики – кристаллы, имеющие решетку из положительных и отрицательных ионов, у которых при деформации их в определенных направлениях на гранях, перпендикулярных направлению деформирующей силы, возникают поверхностные связанные заряды.





Рисунок 3. ^ Решетка кварца.

Если эти грани снабдить металлическими обкладками, то на их внешней поверхности появятся наведенные свободные заряды того же знака, что и связанные. Между обкладками получится разность потенциалов.

Классическим (и практически важным) пьезоэлектриком является кварц (SiO2). Элементарная ячейка его кристаллической решетки содержит

три молекулы, состоящие из ионов кремния (положительных) и кислорода (отрицательных). Они схематично показаны на рисунке 3,а (недеформированный кристалл): положительные ионы – заштрихованные кружки, отрицательные – белые.

При сжатии кристалла в направлении Х1 симметрия ячейки нарушается (рисунок 3,б). На верхней грани кристалла появляется связанный отрицательный заряд, на нижней – такой же положительный. При растяжении (рисунок 3,в) знаки зарядов изменяются на противоположные.

Поверхностная плотность зарядов при малых относительных деформациях пропорциональны возникшему в кристалле механическому напряжению :



Данную зависимость называют уравнением прямого пьезоэффекта.

Коэффициент пропорциональности - пьезомодуль d – выражается в кулонах на ньютон (Кл∙Н-1). Для кварца

d=2∙10-12 Кл/Н.

Рассмотрим обратный пьезоэффект: при подаче на кристалл электрического напряжения он деформируется, причем знак деформации зависит от направления внешнего электростатического поля



Рисунок 4.^ Схематичные изображения прямого (а, б) и обратного (в, г) пьезоэффектов. Стрелками F и Е изображены внешние воздействия - механическая сила и напряженность

  1   2   3



Похожие:

Министерство общего и профессионального образования iconМинистерство общего и профессионального образования свердловской области наградной лист
Почетная грамота (благодарность) Министерства общего и профессионального образования Свердловской области
Министерство общего и профессионального образования iconПравительство ростовской области министерство общего и профессионального образования ростовской области
О проведении государственной итоговой аттестации по образовательным программам основного общего образования в 2014 г
Министерство общего и профессионального образования icon07-21 российская федерация министерство общего и профессионального образования комитет по образованию администрации мо щекинский район аттестационное дело

Министерство общего и профессионального образования iconМинистерство образования и науки российской федерации боу чр спо «Алатырский автомобильно-дорожный техникум» положение о заочном отделении
Правительства РФ от 18 июля 2008 г. №543 образовательные программы среднего профессионального образования могут осваиваться в образовательных...
Министерство общего и профессионального образования iconПакет документов на награды Министерства общего и профессионального образования Свердловской области
Представление на награды Министерства общего и профессионального образования Свердловской области оформляются в соответствии с Положением...
Министерство общего и профессионального образования iconПорядок аттестации педагогических работников государственных и муниципальных образовательных учреждений
Ьного общего, основного общего, среднего (полного) общего образования, начального профессионального и среднего профессионального...
Министерство общего и профессионального образования iconМинистерство образования российской федерации государственное образовательное учреждение высшего профессионального образования

Министерство общего и профессионального образования iconМинистерство образования и науки
Руководителям учреждений начального, среднего и высшего профессионального образования
Министерство общего и профессионального образования iconМинистерство образования и науки российской федерации государственное образовательное учреждение среднего профессионального образования

Министерство общего и профессионального образования iconМинистерство образования и науки российской федерации государственное образовательное учреждение среднего профессионального образования

Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©vmeste.opredelim.com 2000-2017
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы